Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Lett Appl Microbiol ; 76(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37791895

RESUMO

This study evaluated the antibiofilm activity of promethazine, deferiprone, and Manuka honey against Staphylococcus aureus and Pseudomonas aeruginosa in vitro and ex vivo in a wound model on porcine skin. The minimum inhibitory concentrations (MICs) and the effects of the compounds on biofilms were evaluated. Then, counting colony-forming units (CFUs) and confocal microscopy were performed on biofilms cultivated on porcine skin for evaluation of the compounds. For promethazine, MICs ranging from 97.66 to 781.25 µg/ml and minimum biofilm eradication concentration (MBEC) values ranging from 195.31 to 1562.5 µg/ml were found. In addition to reducing the biomass of both species' biofilms. As for deferiprone, the MICs were 512 and >1024 µg/ml, the MBECs were ≥1024 µg/ml, and it reduced the biomass of biofilms. Manuka honey had MICs of 10%-40%, MBECs of 20 to >40% and reduced the biomass of S. aureus biofilms only. Concerning the analyses in the ex vivo model, the compounds reduced (P < .05) CFU counts for both bacterial species, altering the biofilm architecture. The action of the compounds on biofilms in in vitro and ex vivo tests raises the possibility of using them against biofilm-associated wounds. However, further studies are needed to characterize the mechanisms of action and their effectiveness on biofilms in vivo.


Assuntos
Mel , Staphylococcus aureus , Animais , Suínos , Prometazina/farmacologia , Deferiprona/farmacologia , Biofilmes , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
2.
Biofouling ; 39(7): 719-729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37698054

RESUMO

The present study aimed to: (1) evaluate the influence of the steroid hormones (SH) on biofilm development; (2) investigate the formation of persister cells (PC) in biofilms; and (3) investigate the influence of SH on PC formation. Biofilms were derived from vulvovaginal candidiasis (VVC) samples and evaluated by three models: microcosm biofilms grown in Vaginal Fluid Simulator Medium (MiB-VFSM); monospecies biofilms grown in VFSM (MoB-VFSM) and RPMI media (MoB-RPMI). SH altered cell counting and biomass of biofilms grown in VSFM; MoB-RPMI were negatively affected by SH. SH stimulated the formation of PC in MiB-VFSM but not MoB-VFSM; MoB-RPMI showed a lower number of PC in the presence of SH. The results showed that SH altered the dynamics of biofilm formation and development, depending on the study model. The data suggest the influence of hormones on the physiology of Candida biofilms and reinforce the importance of PC in the pathogenesis of VVC.

3.
Biofouling ; 39(2): 218-230, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37122169

RESUMO

Trichosporon spp. are emerging opportunistic fungi associated with invasive infections, especially in patients with haematological malignancies. The present study investigated the in vitro inhibition of efflux pumps by promethazine (PMZ) as a strategy to control T. asahii and T. inkin. Planktonic cells were evaluated for antifungal susceptibility to PMZ, as well as inhibition of efflux. The effect of PMZ was also studied in Trichosporon biofilms. PMZ inhibited T. asahii and T. inkin planktonic cells at concentrations ranging from 32 to 256 µg ml-1. Subinhibitory concentrations of PMZ inhibited efflux activity in Trichosporon. Biofilms were completely eradicated by PMZ. PMZ potentiated the action of antifungals, affected the morphology, changed the amount of carbohydrates and proteins and reduced the amount of persister cells inside biofilms. The results showed indirect evidences of the occurrence of efflux pumps in Trichosporon and opens a perspective for the use of this target in the control of trichosporonosis.


Assuntos
Antifúngicos , Trichosporon , Humanos , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Prometazina/farmacologia , Prometazina/metabolismo , Biofilmes , Plâncton , Testes de Sensibilidade Microbiana
4.
Biofouling ; 39(2): 135-144, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37013808

RESUMO

This study evaluated the effect of the iron chelator deferiprone (DFP) on antimicrobial susceptibility and biofilm formation and maintenance by Burkholderia pseudomallei. Planktonic susceptibility to DFP alone and in combination with antibiotics was evaluated by broth microdilution and biofilm metabolic activity was determined with resazurin. DFP minimum inhibitory concentration (MIC) range was 4-64 µg/mL and in combination reduced the MIC for amoxicillin/clavulanate and meropenem. DFP reduced the biomass of biofilms by 21 and 12% at MIC and MIC/2, respectively. As for mature biofilms, DFP reduced the biomass by 47%, 59%, 52% and 30% at 512, 256, 128 and 64 µg/mL, respectively, but did not affect B. pseudomallei biofilm viability nor increased biofilm susceptibility to amoxicillin/clavulanate, meropenem and doxycycline. DFP inhibits planktonic growth and potentiates the effect of ß-lactams against B. pseudomallei in the planktonic state and reduces biofilm formation and the biomass of B. pseudomallei biofilms.


Assuntos
Burkholderia pseudomallei , Meropeném/farmacologia , Deferiprona/farmacologia , Ferro/farmacologia , Ferro/metabolismo , Biofilmes , Antibacterianos/farmacologia , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Testes de Sensibilidade Microbiana , Quelantes de Ferro/farmacologia
5.
J Microbiol Methods ; 208: 106721, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031894

RESUMO

Ex vivo experiments have been performed aiming at mimicking in vivo environments. The main aim of this research was to standardize in vitro dual-species biofilm formation by Staphylococcus pseudintermedius and Malassezia pachydermatis as a strategy to establish an ex vivo biofilm model. Initially, the in vitro formation of biofilms in co-culture was established, using YPD medium, inoculum turbidity of 0.5 on the McFarland scale and maturation periods of 96 h for M. pachydermatis and 48 h for S. pseudintermedius. Subsequently, biofilms were formed on porcine skin using the same conditions, under which a greater number of cells/ml was observed in in vitro dual-species than in in vitro mono-species biofilms. Furthermore, ex vivo biofilm images demonstrated the formation of a highly structured biofilm with the presence of cocci and yeasts surrounded by the matrix. Thus, these conditions optimized the growth of both microorganisms within biofilms in vitro and ex vivo.


Assuntos
Malassezia , Staphylococcus , Animais , Suínos , Biofilmes , Padrões de Referência
6.
Lett Appl Microbiol ; 76(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36841231

RESUMO

This study aimed to standardize the use of an ex vivo wound model for the evaluation of compounds with antibiofilm activity. The in vitro susceptibility of Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa ATCC 27853 to ciprofloxacin and polyhexamethylene biguanide (PHMB) was evaluated in planktonic and biofilm growth. The effects of ciprofloxacin and PHMB on biofilms grown on porcine skin explants were evaluated by colony-forming unit (CFU) counting and confocal microscopy. Minimum inhibitory concentrations (MICs) against S. aureus and P. aeruginosa were, respectively, 0.5 and 0.25 µg mL-1 for ciprofloxacin, and 0.78 and 6.25 µg mL-1 for PHMB. Minimum biofilm eradication concentrations (MBECs) against S. aureus and P. aeruginosa were, respectively, 2 and 8 µg mL-1 for ciprofloxacin, and 12.5 and >25 µg mL-1 for PHMB. Ciprofloxacin reduced (P < 0.05) log CFU counts of the biofilms grown ex vivo by 3 and 0.96 for S. aureus and P. aeruginosa, respectively, at MBEC, and by 0.58 and 8.12 against S. aureus and P. aeruginosa, respectively, at 2xMBEC. PHMB (100 µg/mL) reduced (P < 0.05) log CFU counts by 0.52 for S. aureus and 0.68 log for P. aeruginosa, leading to an overall decrease (P < 0.05) in biofilm biomass. The proposed methodology to evaluate the susceptibility of biofilms grown ex vivo led to reproducible and reliable results.


Assuntos
Ciprofloxacina , Staphylococcus aureus , Animais , Suínos , Ciprofloxacina/farmacologia , Biguanidas/farmacologia , Biofilmes , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
7.
Antibiotics (Basel) ; 11(11)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36358217

RESUMO

Persistent apical periodontitis occurs when the endodontic treatment fails to eradicate the intraradicular infection, and is mainly caused by Gram-positive bacteria and yeasts, such as Enterococcus faecalis and Candida albicans, respectively. Phenothiazines have been described as potential antimicrobials against bacteria and fungi. This study aimed to investigate the antimicrobial potential of promethazine (PMZ) and chlorpromazine (CPZ) against E. faecalis and C. albicans dual-species biofilms. The susceptibility of planktonic cells to phenothiazines, chlorhexidine (CHX) and sodium hypochlorite (NaOCl) was initially analyzed by broth microdilution. Interaction between phenothiazines and CHX was examined by chequerboard assay. The effect of NaOCl, PMZ, CPZ, CHX, PMZ + CHX, and CPZ + CHX on biofilms was investigated by susceptibility assays, biochemical and morphological analyses. Results were evaluated through one-way ANOVA and Tukey's multiple comparison post-test. PMZ, alone or in combination with irrigants, was the most efficient phenothiazine, capable of reducing cell counts, biomass, biovolume, carbohydrate and protein contents of dual-species biofilms. Neither PMZ nor CPZ increased the antimicrobial activity of CHX. Further investigations of the properties of phenothiazines should be performed to encourage their use in endodontic clinical practice.

8.
Biofouling ; 38(8): 778-785, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36210505

RESUMO

Trichosporon asahii and T. inkin are emergent agents of deep-seated and disseminated infections in immunocompromised patients. The present study aimed to investigate the role of extracellular DNA (eDNA) and the enzyme deoxyribonuclease (DNase) on the structure of T. asahii and T. inkin biofilms, as well as to examine their effect on the susceptibility to antifungals. Biofilms reached maturity at 48 h; eDNA concentration in the supernatant increased over time (6 < 24 h < 48h). Exogenous eDNA increased biomass of Trichosporon biofilms at all stages of development, enhanced their tolerance to antifungals and improved their structural complexity. DNase reduced biomass, biovolume and thickness of Trichosporon biofilms, thereby rendering them more susceptibility to voriconazole. The results suggest the relevance of eDNA in the structure and antifungal susceptibility of Trichosporon biofilms and highlight the potential of DNase as adjuvant in biofilm control.


Assuntos
Antifúngicos , Trichosporon , Humanos , Antifúngicos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana , Trichosporon/genética , DNA , Desoxirribonucleases
9.
Biofouling ; 38(4): 401-413, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35655421

RESUMO

Enterococcus faecalis is the most important agent of persistent apical periodontitis, and recently, Candida albicans has also been implicated in periapical infections. This study aimed to optimize an in vitro E. faecalis and C. albicans dual-species biofilm protocol for endodontic research. Different physicochemical conditions for biofilm formation were tested. Susceptibility assays to antimicrobials, biochemical composition and an ultra-morphological structure analyses were performed. Reproducible dual-species biofilms were established in BHI medium at 35 °C, for 48 h and in a microaerophilic atmosphere. An increase in biomass and chitin content was detected after vancomycin treatment. Structural analysis revealed that the dual-species biofilm was formed by both microorganisms adhered to the substrate. The proposed protocol could be useful for the study of interkingdom relationships and help to find new strategies against periapical infections.


Assuntos
Anti-Infecciosos , Enterococcus faecalis , Biofilmes , Candida albicans
10.
Can J Microbiol ; 68(7): 493-499, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35303412

RESUMO

Paraquat (1,10-dimethyl-4,4-bipyridinium dichloride; PQ) is a free-radical producing herbicide that affects cell membranes and can upset the environmental balance of microorganisms present in soil, such as Cryptococcus spp. This study aimed to evaluate the in vitro activity of PQ against Cryptococcus spp. in planktonic and biofilm forms, as well as the protective effect of antioxidant agents against the antifungal effect of PQ and the kinetics of melanin production in response to PQ. Susceptibility to PQ was evaluated by microdilution. Cryptococcus sp. strains exposed to PQ were grown in media with ascorbic acid (AA) and glutathione (GSH). Melanin production was assessed in the presence of l-3,4-dihydroxyphenylalanine (l-DOPA) + PQ. The minimum inhibitory concentration of PQ against Cryptococcus spp. ranged from 8 to 256 µg/mL. Furthermore, PQ reduced biofilm formation. AA and GSH restored the fungal growth of Cryptococcus spp. exposed to PQ. In addition, l-DOPA + PQ delayed melanin production by 24 and 48 h for C. deuterogattii and C. neoformans sensu lato, respectively, suggesting that PQ induces a fitness trade-off in melanin production. Taken together, our data suggest that the antifungal effect of PQ against Cryptococcus spp. possibly exerts selective pressures interfering with biofilm formation and melanin production by these yeasts.


Assuntos
Cryptococcus gattii , Cryptococcus neoformans , Herbicidas , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Cryptococcus gattii/metabolismo , Cryptococcus neoformans/metabolismo , Herbicidas/metabolismo , Herbicidas/farmacologia , Levodopa/metabolismo , Levodopa/farmacologia , Melaninas/metabolismo , Melaninas/farmacologia , Testes de Sensibilidade Microbiana , Paraquat/metabolismo , Paraquat/farmacologia
11.
Med Mycol ; 59(12): 1191-1201, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34424316

RESUMO

Lipopeptide biosurfactants (LBs) are biological molecules with low toxicity that have aroused growing interest in the pharmaceutical industry. Their chemical structure confers antimicrobial and antibiofilm properties against different species. Despite their potential, few studies have demonstrated their capability against Malassezia spp., commensal yeasts which can cause dermatitis and serious infections. Thus, the aim of this study was to evaluate the antifungal activity of biosurfactants produced by new strains of Bacillus subtilis TIM10 and B. vallismortis TIM68 against M. furfur and their potential for removal and inhibition of yeast biofilms. Biosurfactants were classified as lipopeptides by FTIR, and their composition was characterized by ESI-Q-TOF/MS, showing ions for iturin, fengycin, and surfactin, with a greater abundance of surfactin. Through the broth microdilution method, both biosurfactants inhibited the growth of clinical M. furfur strains. Biosurfactant TIM10 showed greater capacity for growth inhibition, with no statistical difference compared to those obtained by the commercial antifungal fluconazole for M. furfur 153DR5 and 154DR8 strains. At minimal inhibitory concentrations (MIC-2), TIM10 and TIM68 were able to inhibit biofilm formation, especially TIM10, with an inhibition rate of approximately 90%. In addition, both biosurfactants were able to remove pre-formed biofilm. Both biosurfactants showed no toxicity against murine fibroblasts, even at concentrations above MIC-2. Our results show the effectiveness of LBs in controlling the growth and biofilm formation of M. furfur clinical strains and highlight the potential of these agents to compose new formulations for the treatment of these fungi.


Assuntos
Malassezia , Animais , Antifúngicos/farmacologia , Biofilmes , Lipopeptídeos/farmacologia , Camundongos , Testes de Sensibilidade Microbiana/veterinária
12.
Front Cell Infect Microbiol ; 11: 645812, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968802

RESUMO

Persister cells are metabolically inactive dormant cells that lie within microbial biofilms. They are phenotypic variants highly tolerant to antimicrobials and, therefore, associated with recalcitrant infections. In the present study, we investigated if Trichosporon asahii and T. inkin are able to produce persister cells. Trichosporon spp. are ubiquitous fungi, commonly found as commensals of the human skin and gut microbiota, and have been increasingly reported as agents of fungemia in immunocompromised patients. Biofilms derived from clinical strains of T asahii (n=5) and T. inkin (n=7) were formed in flat-bottomed microtiter plates and incubated at 35°C for 48 h, treated with 100 µg/ml amphotericin B (AMB) and incubated at 35°C for additional 24 h. Biofilms were scraped from the wells and persister cells were assayed for susceptibility to AMB. Additionally, we investigated if these persister cells were able to generate new biofilms and studied their ultrastructure and AMB susceptibility. Persister cells were detected in both T asahii and T. inkin biofilms and showed tolerance to high doses of AMB (up to 256 times higher than the minimum inhibitory concentration). Persister cells were able to generate biofilms, however they presented reduced biomass and metabolic activity, and reduced tolerance to AMB, in comparison to biofilm growth control. The present study describes the occurrence of persister cells in Trichosporon spp. and suggests their role in the reduced AMB susceptibility of T. asahii and T. inkin biofilms.


Assuntos
Trichosporon , Antifúngicos , Basidiomycota , Biofilmes , Humanos , Testes de Sensibilidade Microbiana
13.
Microb Ecol ; 82(4): 1080-1083, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33723620

RESUMO

This study aimed to identify Candida spp. from agricultural soils cultivated with azole fungicides and investigate their susceptibility to clinical (fluconazole, itraconazole, voriconazole, and amphotericin B) and agricultural (tetraconazole and tebuconazole) antifungals in planktonic form. Additionally, Candida biofilm-forming ability and biofilm susceptibility to agricultural antifungals and voriconazole were analyzed. Species identification was performed by phenotypic and molecular assays. The susceptibility of planktonic cells was evaluated by the broth microdilution method. The biofilm metabolic activity was evaluated by the XTT reduction assay. The recovered Candida spp. were identified as C. parapsilosis sensu stricto (n = 14), C. albicans (n = 5), C. tropicalis (n = 2), C. fermentati (n = 1), and C. metapsilosis (n = 2). Minimum inhibitory concentration ranges for clinical and agricultural antifungals were ≤ 0.03-4 µg/mL and 1-128 µg/mL, respectively. Two and one C. albicans strains were considered non-wild type for voriconazole and fluconazole, respectively. All strains were biofilm producers. The minimum biofilm inhibitory concentration ranges for tetraconazole and tebuconazole were 128-> 1024 µg/mL, while for voriconazole was 512-> 1024 µg/mL. In summary, this study shows that non-wild type and azole-resilient biofilm-producing Candida species colonize agricultural soils cultivated with azole fungicides.


Assuntos
Candida , Fungicidas Industriais , Antifúngicos/farmacologia , Azóis/farmacologia , Biofilmes , Candida/genética , Candida albicans , Fungicidas Industriais/farmacologia , Testes de Sensibilidade Microbiana , Solo
14.
Microbiology (Reading) ; 167(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33427606

RESUMO

Chlamydoconidium-producing Trichophyton tonsurans strains isolated in Northeastern Brazil have morphological features different from the classic description of this dermatophyte species. This study investigated the phylogenetic relationship of chlamydoconidium-producing T. tonsurans strains isolated in Northeastern Brazil. Also, the effect of terbinafine and farnesol on mature biofilms of T. tonsurans strains was evaluated. The mass spectra of T. tonsurans strains were investigated by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The ITS and LSU loci regions of rDNA and the partial ß-tubulin gene were sequenced and the phylogenetic tree was analysed. The effects of terbinafine and farnesol on mature T. tonsurans biofilms were evaluated through the analysis of metabolic activity, quantification of biomass and observation by scanning electron microscopy. MALDI-TOF MS spectra of the chlamydoconidium-producing T. tonsurans strains differed from the spectrum of the control strain (ATCC 28942), presenting an intense ion peak at m/z 4155 Da. Phylogenetic tree analysis showed that the chlamydoconidium-producing strains isolated in Northeastern Brazil are allocated to a single cluster, differing from strains isolated from other countries. As for mature T. tonsurans biofilms, farnesol reduced biomass and metabolic activity by 64.4 and 65.9 %, respectively, while terbinafine reduced the biomass by 66.5 % and the metabolic activity by 69 %. Atypical morphological characteristics presented by chlamydoconidium-producing T. tonsurans strains result from phenotypic plasticity, possibly for adaptation to environmental stressors. Also, farnesol had inhibitory activity against T. tonsurans biofilms, demonstrating this substance can be explored for development of promising anti-biofilm drugs against dermatophytes.


Assuntos
Antifúngicos/farmacologia , Arthrodermataceae/classificação , Biofilmes/efeitos dos fármacos , Filogenia , Arthrodermataceae/citologia , Arthrodermataceae/efeitos dos fármacos , Arthrodermataceae/fisiologia , Biofilmes/crescimento & desenvolvimento , Brasil , DNA Fúngico/genética , DNA Ribossômico/genética , Farneseno Álcool/farmacologia , Proteínas Fúngicas/genética , Humanos , Testes de Sensibilidade Microbiana , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Esporos Fúngicos/classificação , Esporos Fúngicos/citologia , Terbinafina/farmacologia , Tubulina (Proteína)/genética
15.
Anaerobe ; 69: 102322, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33515722

RESUMO

Clostridioides difficile is a Gram-positive, spore-forming, anaerobic bacillus which is the leading cause of health-care-associated infective diarrhea. The rising incidence of antibiotic resistance in pathogens such as C. difficile makes researches on alternative antibacterial products very important, especially those exploring natural products like propolis. Brazilian Red Propolis, found in the Northeast region of Brazil, is composed by products from regional plants that have the antimicrobial properties. This study aimed to evaluate the in vitro activity of Brazilian Red Propolis (BRP) against C. difficile strains in planktonic and biofilm forms. The susceptibility of four strains of C. difficile to BRP was analyzed by broth microdilution method and vancomycin was included as control drug. BRP-exposed C. difficile cells were evaluated by scanning electron microscopy (SEM). Then, the effects of BRP on growing and mature C. difficile biofilms were also evaluated. BRP minimum inhibitory concentration was 625 µg/mL against all tested strains, while vancomycin MIC range was 0.5-2 µg/mL. SEM showed the loss of homogeneity in bacterial cell wall and cell fragmentation, after BRP-exposure. BRP, at MIC, reduced (P < 0.05) the biomass, matrix proteins and matrix carbohydrates of growing biofilms, and, at 8xMIC, reduced (P < 0.05) the biomass and matrix proteins of mature biofilms. The present study demonstrated that BRP inhibits planktonic growth, damages cell wall, decreases biofilm growth and harms mature biofilms of C. difficile.


Assuntos
Antibacterianos/farmacocinética , Biofilmes/efeitos dos fármacos , Clostridioides difficile/efeitos dos fármacos , Plâncton/efeitos dos fármacos , Própole/química , Própole/farmacocinética , Vancomicina/farmacocinética , Brasil , Testes de Sensibilidade Microbiana
16.
Ciênc. rural (Online) ; 51(7): e20200742, 2021. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1180750

RESUMO

ABSTRACT: Studies on the fungal microbiota of reptiles and amphibians are necessary to better understand of host-microbe interactions and the establishment of fungal disease in these animals. However, these studies are limited. The present researchidentified yeasts from free-ranging reptiles and amphibians from the Caatinga biome andevaluated the virulence factors production, the antifungal susceptibility in planktonic and biofilm growth and the pathogenicity of Candida famata isolates. Twenty-nine isolates of the genera Candida, Cryptococcus and Rhodotorula were identified by phenotypic and/or molecular methods and production of hydrolytic enzymes in vitro by these genera of fungi was evaluated. In addition, susceptibility of planktonic cells and biofilms to azoles and amphotericin B was evaluated. The pathogenicity of C. famata, the most prevalent yeast species isolated, was evaluated using Caenorhabditis elegans model. C. famata was the most prevalent yeast in amphibian and reptilian microbiota. Phospholipase and protease production was observed in 18/29 and 11/29 of the yeast isolates, respectively, while 100% formed biofilms. Itraconazole presented high minimal inhibitory concentrations against C. famata and C. tropicalis. Amphotericin B reduced the biomass and metabolic activity of biofilms. C. famata induced the mortality of C. elegans. In conclusion, reptiles and amphibians are colonized by yeasts capable of producing important virulence factors, especially by Candida spp. that present low susceptibility to azoles which may result from imbalances in ecosystem. Finally, C. famata isolated from these animals presented high pathogenicity, showing the importance of the study of reptile and amphibians fungal microbiota.


RESUMO: Estudos sobre a microbiota fúngica de répteis e anfíbios são necessários para melhor compreender as interações hospedeiro-microrganismo e o estabelecimento de doenças fúngicas nesses animais. No entanto, esses estudos são limitados. O objetivo da presente pesquisa foi identificar leveduras isoladas de répteis e anfíbios do bioma Caatinga e avaliar a produção de fatores de virulência, a sensibilidade a antifúngicos no crescimento planctônico e de biofilme e a patogenicidade de Candida famata. Vinte e nove isolados dos gêneros Candida, Cryptococcus e Rhodotorula foram identificados por métodos fenotípicos e/ou moleculares e a produção de enzimas hidrolíticas in vitro por esses gêneros de fungos foi avaliada. Além disso, foi avaliada a suscetibilidade de células planctônicas e biofilmes a azólicos e anfotericina B. A patogenicidade de C. famata, a espécie de levedura isolada mais prevalente, foi avaliada usando Caenorhabditis elegans. C. famata foi a levedura mais prevalente na microbiota de anfíbios e répteis. A produção de fosfolipase e protease foi observada em 18/29 e 11/29 dos isolados de levedura, respectivamente, enquanto 100% formaram biofilmes. O itraconazol apresentou altas concentrações inibitórias mínimas contra C. famata e C. tropicalis. A anfotericina B reduziu a biomassa e atividade metabólica dos biofilmes. C. famata induziu a mortalidade de C. elegans. Em conclusão, répteis e anfíbios são colonizados por leveduras capazes de produzir importantes fatores de virulência, especialmente por cepas de Candida spp. que apresentam baixa suscetibilidade a azólicos que podem resultar de desequilíbrio no ecossistema. Por fim, C. famata isolados desses animais apresentaram alta patogenicidade, mostrando a importância do estudo da microbiota fúngica de répteis e anfíbios.

17.
Biofouling ; 36(9): 1129-1148, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33349038

RESUMO

Microbial biofilms are a natural adaptation of microorganisms, typically composed of multiple microbial species, exhibiting complex community organization and cooperation. Biofilm dynamics and their complex architecture are challenging for basic analyses, including the number of viable cells, biomass accumulation, biofilm morphology, among others. The methods used to study biofilms range from in vitro techniques to complex in vivo models. However, animal welfare has become a major concern, not only in society, but also in the academic and scientific field. Thus, the pursuit for alternatives to in vivo biofilm analyses presenting characteristics that mimic in vivo conditions has become essential. In this context, the present review proposes to provide an overview of strategies to study biofilms of medical interest, with emphasis on alternatives that approximate experimental conditions to host-associated environments, such as the use of medical devices as substrata for biofilm formation, microcosm and ex vivo models.


Assuntos
Biofilmes , Animais , Biomassa
18.
Med Mycol ; 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32926150

RESUMO

The emergence of tolerant Cryptococcus neoformans strains to antifungals has been described. It has directed researchers to screen for new antimicrobial compounds. In this context, several plant-derived compounds, such as anthraquinones (aloe emodin, barbaloin, and chrysophanol), have been investigated for their antimicrobial properties. This study aimed to evaluate the in vitro effect of aloe emodin, barbaloin and chrysophanol on C. neoformans in vitro growth. In addition, the interaction between these anthraquinones and amphotericin B and itraconazole was evaluated. Initially, the minimum inhibitory concentrations (MIC) of these compounds were determined against 17 strains of C. neoformans by the broth microdilution method and then pharmacological interaction assays were performed with 15 strains by the checkerboard method. Aloe emodin, barbaloin, and chrysophanol showed minimum inhibitory concentrations of 236.82-473.65 µM (64-128 µg/mL), 153-306 µM (64-128 µg/ml) and ≥1007 µM (≥256 µg/ml), respectively. Furthermore, aloe emodin (11/15), barbaloin (13/15), and chrysophanol (12/15) showed pharmacological synergism (FICI < 0.5) with amphotericin B at subinhibitory concentrations (MIC/4). The itraconazole-aloe emodin interaction was additive (1/15) (0.5 < FICI < 1.0). The itraconazole-barbaloin interaction were synergistic (2/15) and additive (5/15); whereas itraconazole-chrysophanol interactions were additive (2/15). Anthraquinones, especially aloe emodin and barbaloin, present in vitro antifungal activity against C. neoformans and potentiate the antifungal activity of amphotericin B.

19.
Biofouling ; 36(7): 783-791, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32842796

RESUMO

This study describes an ex vivo model that creates an environment for dermatophyte biofilm growth, with features that resemble those of in vivo conditions, designing a new panorama for the study of antifungal susceptibility. Regarding planktonic susceptibility, MIC ranges were 0.125-1 µg ml-1 for griseofulvin and 0.000097-0.25 µg ml-1 for itraconazole and terbinafine. sMIC50 ranges were 2->512 µg ml-1 for griseofulvin and 0.25->64 µg ml-1 for itraconazole and terbinafine. CLSM images demonstrated a reduction in the amount of cells within the biofilm, but hyphae and conidia were still observed and biofilm biomass was maintained. SEM analysis demonstrated a retraction in the biofilm matrix, but fungal structures and water channels were preserved. These results show that ex vivo biofilms are more tolerant to antifungal drugs than in vitro biofilms, suggesting that environmental and nutritional conditions created by this ex vivo model favor biofilm growth and robustness, and hence drug tolerance.


Assuntos
Arthrodermataceae , Biofilmes , Preparações Farmacêuticas , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana
20.
Biofouling ; 36(5): 610-620, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32619353

RESUMO

This study proposes a microcosm biofilm (MiB) model for the study of vulvovaginal candidiasis (VVC). Different conditions that mimic the vaginal environment were tested for MiB formation. The best growth conditions were obtained with samples incubated in vaginal fluid simulator medium pH 4.5 at 35 °C under a microaerophilic atmosphere. MiBs were evaluated for growth kinetics, fluconazole susceptibility and morphology. Samples containing high numbers of bacteria were analyzed for metagenomics. At 48 h, MiBs presented a higher cell density (CFU ml-1), a higher biomass and tolerance to fluconazole than their corresponding monospecies biofilms. Morphological analysis of MiBs revealed blastoconidia preferentially adhered to epithelial cells. Abundant Lactobacillus spp. were detected in two clinical samples; their MiBs showed a lower biomass and a higher fluconazole susceptibility. The proposed model proved to be a useful tool for the study of the complex microbial relationship in the vaginal environment, and may help to find new strategies for VVC control.


Assuntos
Antifúngicos/uso terapêutico , Biofilmes , Candidíase Vulvovaginal/tratamento farmacológico , Candida albicans , Feminino , Fluconazol , Humanos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...